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Turbulent air flow over a surface gravity wave of small amplitude is studied on the 
basis of a family of first-order closure models, of which the eddy viscosity model and 
Prandtl’s mixing-length model are members. Results are obtained by the method of 
matched asymptotic expansions in three layers. The problem is modelled by taking 
into account the combined effects of turbulence and molecular viscosity, which 
accommodates a proper imposition of the boundary conditions at the wave surface. 
The detailed structure of the various wave-induced field variables throughout the 
flow is then investigated. In  addition, it is found that the growth rate of the waves 
by wind depends on the turbulence model. I n  particular, the more sensitively the 
mixing length depends on the shear in the mean air flow, the higher the growth rate. 
The validity of the results we obtain is restricted to small drag coefficient and small 
phase speed. Comparisons are made with other theoretical studies and with recent 
laboratory and field observations. 

1. Introduction 
Generation of surface gravity waves by wind is an intriguing problem and has led 

to much controversy. This arose because, on the one hand, the first rational attempt 
towards a determination of the growth rate of waves by wind (Miles 1957) used a 
simple model for the turbulent air flow, where the direct effects of turbulence on the 
wave-induced motion in the air were disregarded. On the other hand, field 
measurements in the sixties and the beginning of the seventies (e.g. Dobson 1971) 
gave growth rates that  were larger by an order of magnitude than Miles’ prediction. 
The experimental determination of the growth rate is, however, far from 
straightforward as it involves the determination of a small phase difference between 
the pressure and the time derivative of the surface elevation. 

Attempts to  bridge the gap between observed and theoretical growth rates of 
waves by wind were directed towards the use of more realistic models of turbulent 
air flow over surface gravity waves on the one hand, and towards a more careful 
experimental determination of the above-mentioned phase difference on the other 
hand. Consequently, later field experiments by Snyder (1974) and by Snyder et al. 
(1981) show a better agreement between observed and theoretical growth rates, 
although, especially for the longer waves, the observed growth rates were still larger 
by a factor of two. The observed growth rate for high-frequency waves (Plant & 
Wright 1977) was found to be in agreement with Miles’ theory (within a factor of 2). 

A more realistic modelling of turbulent air flow over water waves started with the 
work of Chalikov (1976, 1978), Gent & Taylor (1976), Gent (1977) and Makin (1979). 
These authors introduced two new features. Firstly, the numerically determined 
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growth rates were obtained from a fully nonlinear calculation. Secondly, the direct 
effect of turbulence on the wave-induced motion was taken into account. Air 
turbulence was modelled either by an eddy viscosity model or by a higher-order 
closure model (see also Al-Zanaidi & Hui 1984). Results of these more realistic models 
were, however, disappointing in that thcy still showed a substantial disagreement 
with observed growth rates for both high- and low-frequency waves. In fact, the 
agreement between Miles’ theory and observations is better. 

This rather curious situation calls for some explanation, which partially may be 
found in certain problems with both theory and experiment. The observed growth 
rate for high-frequency waves is obtained from the time series of the surface 
elevation (Plant & Wright 1977). Therefore, this growth rate not only represents the 
effect of wind on waves, but also effects of dissipation and nonlinear interactions. 
Janssen (1987) found that nonlinear intcractions are a t  least as important as the 
effect of wind, giving rise to an uncertainty of a factor of two in the growth rate of 
high-frequency waves. However, the growth rate of low-frequency waves is uncertain 
also. As remarked by Makin (1988), the observed wave-induced pressure is 
extrapolated to  the air-water interface assuming potential flow, which is not 
corroborated by the theoretical model calculations. Also, measurements of the height 
dependence of the wave-induced air pressure by Papadimitrakis, Hsu & Street (1986) 
show that for low-frequency waves, with phase speed of the order of the wind speed, 
the pressure does not always decay exponentially. According to Makin, Snyder et al. 
overestimate the growth rate of low-frequency waves by wind by a factor of two. 

On the other hand, the models for turbulent air flow over surface gravity waves are 
not flawless either. Both the eddy-viscosity type of model and the higher-order 
closure models assume that the waves are only a slow perturbation to the turbulent 
air flow. Here, ‘slow’ means that the period of the surface wave is long compared to 
a typical relaxation time of the turbulence. As argued in $ 2  of this paper, the 
separation of timescales is not valid for low-frequency waves that have their critical 
layer far away from the water surface. For these waves the opposite case may be true, 
namely, that the period of the waves becomes shorter than the typical turbulent 
timescale. In  that event, a completely different approach to the problem of the 
growth of waves by wind is needed. as for example in the paper Nikolayeva & 
Tsimring (1986) in which the effect of gustiness on wave growth is studied. 

We conclude from this discussion that the problrm of the growth of waves by wind 
is far from resolved. As Phillips mentioned in 1977, this problem provides a crucial 
test of our knowledge of turbulent air flow. For this reason we study in this paper the 
dependence of the results of the growth rate of gravity waves on the model of air 
turbulence. We restrict our attention to a family of first-order closure models, of 
which the eddy-viscosity model and Prandtl’s mixing-length model are members. 

In order to obtain a physically consistent model, which properly describes the 
beheviour of the various field variables throughout the flow, the effects of both 
turbulence and molecular viscosity are taken into account. Based on this model we 
study the linear stability of a plane-parallel shear flow in the air subject to wave-like 
perturbations a t  the air-water interface (see $2). The resulting eigenvalue problem 
is solved by the method of matched asymptotic expansions. For small drag 
coefficient, and small wave phase speed, one may distinguish three layers, namely, an 
inner layer, an intermediate layer and an outer layer. Molecular viscosity is 
dominant a t  the bottom of the inner layer and prevents the wind profile from 
becoming singular at the water surface. In 53 the three-layer structure of the 
problem is sketched in detail. I n  $4 the solutions in the various layers are matched 
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and by application of the appropriate boundary conditions a t  the air-water interface 
the growth rate is dctermined. 

Our results show that the growth rate of the waves indeed depends on the 
turbulence model. In  particular, the more sensitively the mixing length depends on 
the shear in the air flow, the higher the growth rate. 

It should be noted that Jacobs (1987) attempted to solve a similar problem for the 
eddy-viscosity model, where the effect of viscosity was disregarded. In  that event, 
the problem has a two-layer structure, composed of the intermediate and outer layers 
mentioned above. Studying the solution in these layers only, this author was forced 
to  assume that the stress in the surface layer depends on the small parameter (i.e. the 
drag coefficient) as well, a rather unusual circumstance since the stress is a control 
variable. It was a surprise to find that, although Jacob’s method was not quite 
correct, his end result agrees with ours in case of the eddy-viscosity model. 

In  $5 uniformly valid expressions for the wave-induced field variables are derived. 
In  $6  the results are compared with other studies (Stewart 1970; Gent & Taylor 
1976: Snyder et al. 1981; Plant 1982; Hsu & Hsu 1983; Papadimitrakis et al. 1986; 
Makin 1989). Finally, in $7  we summarize our conclusions. 

2. The governing equations 
We consider the growth of surface gravity waves generated by a turbulent wind. 

The flow is assumed to  be two-dimensional. The x-axis of a Cartesian coordinate 
system is parallel to the unidirectional, horizontal basic flow U ;  the y-axis is vertical 
and increasing height corresponds to increasing y. The magnitude of the basic flow 
depends on height only. The air-water interface, when a t  rest, is located a t  y = 0. 
Both the air and the water are assumed to be incompressible, and the densities are 
constant. 

The governing equations for air are of the form 

Du 1 
- = --vVp+V.(u(Vu+(VU)T)}, 
Dt Pa 

v*u = 0, (2) 

where D/Dt is the material derivative, T denotes the transpose, u = (u, w )  is the 
velocity, pa is the density, p is the pressure, and u is the kinematic viscosity. 

The combined effects of molecular viscosity and turbulence are taken into account 
by assuming that the kinematic viscosity is given by 

(3) 

wheie uo is the constant molecular viscosity and ue is the eddy viscosity which may 
be time-dependent. 

Y = v,+ ve(yi t ) ,  

To model the turbulence, the eddy viscosity is written in the general form 

where 

with 6, the displacement of the air-water interface. In  addition, the constant 
n > 0 ,  K is the von Karman constant and u* is the friction velocity. In  the absence 
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of waves (&+0) we have for n = 0 the eddy-viscosity model (v, = KU* y), while for 
n = 1 we deal with Prandtl’s mixing-length model (Tennekes & Lumley 1972). 
Equations (4) and (5) are a generalization to the case of a moving interface where we 
have made sure that the mixing length 1 vanishes at the interface. 

The turbulence model (4), (5) is valid if a typical eddy turnover time (e.g. the time 
for the turbulence to respond to a change in forcing) is much smaller than the period 
of the waves. In  that event, changes induced by the water surface in the air flow are 
slow and modelling of the momentum transport by means of (4) for a stationary 
turbulent flow seems justified. In  other words, with w the typical angular frequency 
of the wave, and the timescale of the turbulent flow, we have the condition 

“7; + 1. (6)  

Here we take the eddy turnover time = L,/u,, where L, is chosen to be equal to 
the critical height yc (U(y, = c ,  where c is the phase speed of the wave) since in 
inviscid theory the critical layer plays a major role in the energy transfer from air to  
water. For a wind profile of the form 

U(y) = -log 1 + -  , 
U* K i ;I 

with a Charnock relation for the roughness length yo according to 

U2 

9 
yo = a > ,  

condition (6) becomes 

(7)  

where we used the dispersion relation for deep-water gravity waves. Relation (9) 
boils down to the following restriction on the ratio of phase speed to friction velocity : 

- c 1  <-log($), 

U* K 

where CI + 1.  In  other words, the turbulence model (4), (5) is only valid for high- 
frequency waves. 

Although the theoretical calculations that follow are valid for arbitrary roughness 
length, we shall use the Charnock relation (8) when comparing our results with 
observations. In this connection, i t  should be realized, however, that the Charnock 
constant is not really a constant but depends (in the case of wind sea) on the wave 
age parameter cp/u*,  where cp is the phase speed corresponding to the peak frequency 
of the wind-sea spectrum (Donelan 1982; Janssen 1989; Maat, Kraan & Oost 1991). 
Here, we shall be mainly concerned with old wind sea and we take 01 = 0.0144. 

Using the set of equations (1)-(5) we study the stability of the basic flow, satisfying 
the relation 

where vLo) is the eddy viscosity in the absence of waves and where we impose 
U(0) = 0 because there is no mean current in the water. From (4) and (10) i t  follows 
that dU/dy > 0. 
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Following Jacobs (1987) we introduce dimensionless variables by defining a 
lengthscale C = ilk, where k is the horizontal wavenumber, and a velocity scale V ,  
where V is the wind speed a t  height L above the water surface. The coordinates are 
scaled by L ,  the velocities by J' (where the dimknsionless phase velocity is denoted 
by c ) .  the time by L/  V .  the pressure by pa, v2, and the viscosity by Lu,. Furthermore, 
we define 

E = u*/c'. (11) 

Sinw c corresponds to the square root of the drag roeficient a t  height L ,  it will be 

In terms of dimensionless quantities, the basic flow satisfies 
regarded as a small parameter. 

To investigate the stability of the basic flow, we write u = U + i i ,  v = v", p = 9, 
where the tilde denotes a perturbation quantity. Furthermore, v, = via) + v p ) ,  where 
v c )  denotes the perturbed eddy viscosity. Linearizing (1) and (2), and omitting the 
tildes, we obtain 

By introduction of the sbream function Y according to 

' aY -a v "=-w 
?I=- ax 

the continuity equation is automatically satisfied, and by elimination of the pressure 
the equation for the stream fun'ction becomes 

We consider a single Fourier component, with a depcndencc on x and t of the form 
exp{i(x-cct)}. Thc water displacement, scaled by L ,  reads 

(18) 

where I f 1  is the wave slopc. As a consequence the perturbed eddy viscosity is given 

,cw = f $z-ct) 

by 

The water is assumed to  be incompressible, inviscid, and irrotational. There is no 
basic current and the water is infinitely deep. Its density pw is a constant. The 
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disturbances are assumed to vanish as y + - co. A t  the intcrface of the air and water 
we require continuity of the horizontal velocity, the vertical velocity and the normal 
stress. Using the scaling introduced below ( l o ) ,  and defining 

5 = P a / P w  (20) 

the linearized continuity conditions (evaluated at  y = 0) read, respectively, 

6*Y f 
ayax 2 i e 2 f + p - 2 ~ v - -  = - (c * -c& (23) 

where co = (gL/V2)h is the phase velocity of the water wave as s + 0. The motivation 
for the choice of the no-slip condition will be described below (51). 

Because of the importance of resonant interaction of the wave with the basic flow, 
we choose c > 0. In that case a critical layer develops around U = c .  In  view of (9) 
there is, on the other hand, an upper bound on the permitted values of the phase 
speed c in order that  the turbulence model is valid. 

3. The three-layer structure 
We introduce the scale transformation 

5 = Y/El,  €1 = v g ,  (24) 

to describe the solution in the ‘inner’ layer y = O(e,). 

be expressed as 
In  view of (12) and (24) the basic eddy viscosity and the basic velocity profile may 

where Fe and 0 depend on n and {only, and dl7/d[ > 0. The scaling introduced below 
(10) implies that a( l/cl) = K / E .  Consequently, = o( 1 )  as 6 + 0. Thus, the limit 
e + O  corresponds to the limit of vanishing viscosity. 

Making use of (12), (24) and (25), we deducc that 

and 

where the constants ak depend on n only. Integrating (26) with respect to  <, and 
requiring that a( l / e l )  = K / E ,  we obtain 

E 1 = edKle-P){ 1 + O(e-K’f,)} as E --f 0, (28) 

where p = p(n) is the integration constant, determined from thc requirement that  
U(0)  = 0. Thus, the parameter el is transcendentally small with respect to E ,  i.e. i t  
vanishes exponentially as E + 0. In what follows, transcendentally small terms will be 
denoted by TST. 
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Substituting (24) into (17) ,  i t  is found that in the limit as c+O, with c fixed, the 
resulting equation reduces to the limit equation' 

L, Y =  0, (29) 
where 

Making use of (27), it is easily shown that (29) has solutions of the form 

Y(1)(<) = 1, 

Y(2)(2,(c) = 6, 
Y(3)( [ )  = [log 6+ O(1og 6) as 6+ 

!P4)(5) - as [+m.  
We now consider the 'outer' layer y = O(1). I n  this layer, the basic eddy viscosity 

varies linearly with height, while the basic velocity varies logarithmically : 

(32) 
€ 

K 
v(o)  = KY+TST, U = 1 +-log y+TST. 

At the bottom of the inner layer, on the other hand, where laminar viscosity is 
dominant, vLo) is proportional t o  elfn, while U is linear. 

In  the limit as c+O,  with y fixed, (17) reduces to the limit equation 

(6 - 1) Y = 0. (33) 

Applying the boundary condition Y + 0 as y -+ co, i t  is then found that the leading- 
order outer solution, which represents the inviscid mode, is proportional to exp ( -y). 
In  addition, (17) possesses two WKB solutions. The one vanishing as y +  00, and 
representing the 'viscous' mode, is of the form 

Y,,, = yte+(U/e)'B{1+o(l)) as e + ~ ,  (34) 
where 

It is now readily seen that none of the solutions (31) of the limit equation (29) for 
the inner layer matches with (34). Apparently, the matching can only be carried out 
via the solutions in an 'intermediate' layer between the inner and outer layers. 

For the intermediate layer, the appropriate scale transformation reads 

7 = Y/.. (36) 
Then we have 

(37) 
e e 

K K 
= EKT,I+TST, U = l+-loge+-logq+TST. 

We now substitute (36) into (17), where use is made of (37). In  the limit as s+O, 

LY = 0, (38) 

with 7 fixed, the resulting equation then reduces to the limit equation 

where 

L = -  K(l+n)r--iW . 
dV2 d2 { dV2 d2 i (39) 
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Equation (38) has the linearly independent solutions 

where K ,  and I1 are modified Bessel functions (Abramowitz &, Stegun 1964). The 
solution w 4 ( q )  should be discarded because i t  tends exponentially to infinity as 
q + 00. The solution w 3 ( y ) ,  on the other hand, vanishes exponentially as q + CQ. As 
expected, i t  matches with the outer solution (34), hecause 

w 3 ( q )  ru (+ingliqie-iqh as y+co. (41) 

The small-q expansion of w 3 ( q )  reads 

4 7 )  = 1 +PO 7 1% 'I + P l y  + 0(r2 1% 7) .  (42) 

where po = -aa2, p1 = -icr2{$r+~i(~-y+log(2/a))}. 
Actually, there is a fourth layer, namely, the critical layer. I t  is situated around 

the point yc where U = c. Integrating (26) with respect t o  c, and making use of (24), 
(25) and (28), it is found that 

as E +  0. (43) yc ru e-"W" 

The critical layer is situated a t  the top of the inner layer and at the bottom of the 
intermediate layer. Furthermore, the width is O(ey ) .  It turns out. however, that the 
inner-layer solutions can be matched directly with the intermediate-layer solutions. 
Apparently, the critical layer is not important in this respect ; cf. Townsend (1972). 

4. Determination of the growth rate 
4.1. The inner layer 

In the inner layer, where the transformation (24) applies, the stream function is 
written as 

Then the boundary conditions (21) and (22) imply that 

Y,(fz;O) = - c j ,  Y i ( e ; O )  = E j ,  

Y 6 ( E ; O )  = 0: !q(€$) = -ecf, 

(45) 

(46) 

where the prime denotes differentiation with respect to 5. 

resulting equation. This yields, making use of (25). 
We now substitute (24) into (17). Furthermore, (44) is substituted into the 

dz 
L, U; = - - { ~ ( 1  +n)fc"(P')l+"}. (47) 

d S  

and 

L, Yfl = i{(t'-c) !P~-C"'Yz}. 

where L, is defined by (30). 
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From (12) and (25) we obtain 

{ 1 + ( 1 + n) v,( [)} 0" = - K (  1 + n) 5" ( ?7')1+fl, (49 1 
where 

iTe = @ + n ( V ) n .  

Thus, (47) has a solution of the form 

which satisfies the boundary conditions (45). 
Since the water is assumed to  be inviscid, one of the continuity conditions at the 

interface between the air and water should be dropped. Since continuity of the 
vertical velocity and the normal stress are essential, there remains either the no-slip 
condition or the condition of continuity of the shear stress. It turns out that  the no- 
slip condition is essential, which can be shown as follows. 

The general solution of (47) is of the form 

!Pa(e;[) = En([) f + K ,  Vl)([)+K, !P(2)([)+K3 V3)([)+K4 F4)([), 

cf. (29), (31) and (49), where the constants K,  may depend on E .  We now write the 
asymptotic expansion of the above solution as [+ GO in terms of the intermediate 
variable 7, defined by (36), where we also make use of (24) and (28). Then it is found 
that, unless K,  = K3 = K4 = 0,  the resulting expansion (in terms of 7) tends to  
infinity as E ,  + 0. Only when this limit is bounded, however, do we obtain physically 
meaningful results. Then the condition of continuity of the vertical velocity, which 
implies that  !Pa(e;O) = - c f ,  determines the remaining constant K ,  in !Pa. Since !Pa 
then reduces to  (51), however, the no-slip condition (21) is automatically satisfied to 
leading order. In other words, the no-slip condition is the relevant third continuity 
condition. 

K 

I n  view of (51), equation (48) reduces to 

L, Y, = 0. (52) 

The solution of this equation is written as 

!P, = €!Po([)  + E2!Pl([) + (e3 log 8 )  !P,([) + E"&) + . . . , 

!P,([) = A,  !P(""([) +B, VZ)([) +c, V3)([) +D,  F 4 ) ( [ ) .  

(53) 

where the various !Pi([) all satisfy the equation L, !Pi = 0. In  view of (29) and (31), 
!Pi is of the general form 

(54) 

Next we shall write the asymptotic behaviour of (44) as [+OO in terms of the 
variable 7, defined by (36). Integrating (26) with respect to [ yields the asymptotic 
expression for as [+ 00. Substituting the relation [ = e7/el  into this expression, 
where E ,  is given by (28), the solution (51) becomes 

(55 ) 1 !Pa - ( ~ + ~ l o g e + - l o g  8 7 f+TST. 
K 

Now (55)  is bounded in the limit as E + O ,  7 fixed. Consequently, when the asymptotic 
behaviour of (el/€) Y, is written in terms of 7,  this limit should be bounded also. This 
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leads to the condition that D, = 0 in (54). Regarding the solution Yo, the factor Go 
in (54) should vanish. Then the boundary cwnditions (46) imply that A ,  = 0, 
B, = -cf. The coefficients in Y,, Y2, Y3. on the other hand, can only be determined 
by matching with the solution in the intermediate layer. We obtain : 

: {i 1 e 

€ 
ya + y,] - ‘Wf+ (6 log €) - -k € - log ?] f ( KCl - Cf ) ‘(I 

+ (e2 loge) ( C ,  + KC,) ~ + E ~ { ( B , - ~ C ’ ~  + dY3) 71 + P1 log ‘(I} + o(e310g3e). (56) 

Substitution of (24)  and (44)  into (14) leads to the expression for the derivative of 
the pressure in the inner layer, namely, 

p:nn = ie{(l+V,) Yi+2v‘, Ya-nve Y i - e f ( l  + n ) c n ( r ) l f n } + T S T .  (57) 

With referencc to (49), (50) and (51), cxprcssion (57) reduces to pinn = TST. 
Consequently, the pressure in the inner layer reads 

p i n n  = pa(€) + TST, 
where pa is independent of 5. 

In  the outer layer, thc stream function is written as 

4.2.  The outer layer 

yo,, = u Y ) + e o 1 ( Y ) + . . . ’  

where the WKB solution (34) is omitted for the time being. 
Substituting (59) into (17), and making use of (32), we obtain 

(59) 

Requiring that Y +  0 as y+ co, the solutions of (60) and (61) read 

where F, and F, are constants to be determined, and El denotes the exponential 
integral (Abramowitz & Stegun 1964). 

The intermediate expansion of the outer solution (59) is obtained by writing the 
small-argument expansions of O,(y) in terms of 7. Making use of (62), (63) and the 
relation E1(2y)  = - ( y  + log 2) -log y + 2y + O(y2) as y + 0. where y is Euler’s constant, 
it is found that 

(64)  

The constants in the intermediate expansion (56) of thc inncr solution, and those 
in the intermediate expansion (64) of the outer solution, are determined by matching 
these expansions with the solution in the intermediate layer. This will also determine 
the magnitude of the viscous mode. and the growth rate. 
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4.3. Thp infrrmediate luyer 

In the intermediate layer, where the scale transformation (36) applies, the stream 
function is written as 

(65) 
Expressing (17) into the variable 7, and making use of (37), the substitution (65) 
leads to  a hierarchy of equations for thc various qi. 

The leading-order term q~,, satisfies the equation 

y i n t  = Vn(7) + (clogE)Vi(7) + ~ p ) z ( q )  + (c2 loge) v,(T) + ~ ~ ~ 4 ( 7 )  + ... . 

LVO = 0, (66) 
where L is defined by (39). The general solution of (66) is a linear combination of the 
basic solutions in (40), where it is recalled that the basic solution w4 should be 
discarded. The small-argument expansion of the general solution is obtained by 
making use of (42). Comparing this expansion with the intermediate expansion (56) 
of the inner solution yields 

Vn = wf. (67) 

LV, = 0. (68) 

01 = f l K .  (69) 

Now the equation for p7, reads 

Proceeding in the same manner as before, matching of the general solution of (68) 
yields 

Likewise, from the equation 
iwf 2(l+n)f  

KT 
Lq, = 7- 

r3 , 

we obtain 

while the coefficient C ,  in (56) becomes 

2e- 1 c, = (+. 
Matching the solution (65) with the intermediate expansion (64) of the outer 

solution, where use is made of (67), (69) and (71), yields 

s 

which determines the outer solution (59) up to O(e). 

pressure in the intermediate layer : 
Substituting (36) and (37) into (13), we obtain the following expression for the 

In view of (65), (67), (69) and (71), this may be written in the alternative form 

pin t  = -w'f + ( e l o g e ) P , ( ~ ) + ~ ~ : p , ( ~ ) ,  (75) 
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To calculate the growth rate, v3 and v4 should be known. The equations for these 

LP3 = 0, (76) 

Matching the general solutions of (76) and (77) with (56) yields 

(78) 

where p3 and p4 are still to be determined because not all parameters in (56) are 
known. 

To determine (78) definitely, we proceed as follows. The asymptotic expression (as 
7 + 00)  for the term s2v4 in (65) contains a term proportional to c2yfexp (-i&), as 
is deduced from (41) and (78). The outer expansion of this term matches with the 
viscous mode (in the outer layer), which is proportional to (34). Incorporating this 
mode into the outer solution (59), i t  is found that 

f 
913 = P 3 y ,  v g  = ~wfr2+-ylogr+P4?1+2i( l+n)f{-1+w,(y)} ,  

K 

+..., (79) + ci( 1 + n) 2~(4i7C,7); y+ e-ia(y/a)+ 
cf. (62), (63) and (73). 

The wave-induced horizontal velocity in the outer layer, denoted by uout, is 
determined from (79) according to uOut = -d!Pou,/dy, cf. (16). Then the intermediate 
expansion reads 

I 1 
You, = wfe-y + cf -- (y  + log 2) e-y --eYE,(2y) ++inK(y2-y) e-Y 

K i :  

1 
+wf - (€log€) --€f -logy +- ( -  1 +2y+2 log 2) f 

K {: K 
Uout - -- 

K 7  

'I i d  
-$nK + wy + 2i( 1 + n) (aim),- ( y f  e-iO@) + . . . . (80) 

Now we substitute (67), (69), (71)  and (78) into the expression (65) for !Pint. 
Matching (80) with the wave-induced horizontal velocity in the intermediate layer, 
i.e. matching with -e--ldYint/dy, finally determines P3 and p4 in (78). We obtain 

d7 

f 
c p 3  = ;% 

I y + 2 i ( l t n ) { - l + w 3 ( ~ ) ) ]  . (82) 

Then (75) becomes 

p i n t  = -w2f+ EWf (y  +log 2) + 2 i ~  (1 +in) + WT + . . . . (83) I 
Matching (83) with the pressure in the inner layer, given by (58), yields 
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4.4. The growth rate 
The growth rate, Cr, is defined by 

where co = ( g L / P ) i  is the dimensionless phase velocity of the deep-water wave. It 
corresponds to the energy growth rate per radian (Miles 1957). 

Substihting the expression (84) for the pressure at  the water surface into the 
continuity condition (23) for the normal stress, we obtain the leading-order 
expression 

= ~ S K E (  1 fan)  ( ~ .,fc.). 
where s is defined by (20) and n is the free parameter in the turbulence model (4), (5). 

For n = 0, corresponding to the eddy-viscosity model, the growth rate is the same 
as the one derived by Jacobs (1987). For n = 1, corresponding to Prandtl’s mixing- 
length model, i t  becomes a factor of 4 larger. The growth rate is larger as n increases. 
This shows that indeed the growth rate of the waves depends on the turbulence 
model. 

To derive the expression (86) for the growth rate, it  was assumed that the flow is 
two-dimensional. In the case of a three-dimensional flow, however, when the wind 
field makes an angle 0 with the direction of wave propagation, the above analysis still 
applies, because the two-dimensional part of the wave-induced velocity field in the 
vertical planes parallel to  the direction of wave propagation remains solenoidal. 
Retracing the analysis for the eddy-viscosity model, it is then found that 

which shows that the growth rate is maximal for 13 = 0, corresponding to  the case 
when the wind has the same direction as the wave. The above result also suggests 
that, when the phase speed is small enough, the wind transfers energy from the water 
to the air if 101 exceeds some critical angle 0,, with 0, < in. In  what follows, however, 
we only consider the two-dimensional model (0 = 0). 

5. The wave-induced field variables 
We now derive uniformly valid expressions for the wave-induced velocities, u and 

v ,  and the wave-induced pressure p .  The range of uniform validity is bounded from 
below by y = yl, where y1 % E ~ .  In view of (24) this means that the inner layer is 
excluded. 

Let C denote either u, IJ or p .  Then the uniformly valid expression for Z, denoted 
by C,,, reads 

(87) 

Here Cout denotes the outer solution, Lint denotes the intermediate solution and 
cp (Zout, Zint) is the common part of Zout and Zint, consisting of the common terms 
that cancel out in the matching. 

The outer solution for the wave-induced stream function is given by (79). When 
making a higher-order calculation, it turns out that the remainder term in (79) is 

Z u n  = L o u t  + Cint  - CP ( z o u t ,  z int) .  
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O(e210ge). The intermediate solution is dctcrmined from (65) ,  (67), (69), (71), (81) 
and (82), where w 3 ( r )  is given by (40). The remainder term in (65) appears to be 
O(e310g2e). The velocities are found from (16). The outer solution for the pressure 
is determined from (13), (32) and (79). The intermediate solution is given by (83). 
From the above expressions we finally obtain 

1 1 e-y 

K K Y  
u,, = wf e-Y - ef ( y  + log 2 )  e-" --eg E,(2y) + -- 

- $nK( 1 - 3y + y') + 2i( 1 + n) 3 + O(e2 log2 c), (88) 
dw d r  1 

I 
I 
1 

1 
u,, = iwfe-Y+ ief -- (y  + log 2) e? -- ey El(2y) + $inK(y2 - y) e-Y + O(&), (89) c K 

1 
2 i ~  + + c (  1 + y - y') +- ( y  + log 2 -logy) eO p,,  = - w2f e-Y+ ewf 

K 

1 

[i 
- -ey~,(2y)  +O(E;). (90) 

To the order considered, it appears that the inner. expansion of the outer solution 
for the pressure corresponds to the inner solution (84). In  other words, the pressure 
at  the water surface is obtained from the outer solution for the pressure by letting 
y + 0. When this also applies to  higher order, it  can be shown that (86) is correct to 

It should be noted that the range of uniform validity of the above expressions does 
not extend to infinity because of the secular terms. In  fact, this range is limited to 
y < yz, where yz = O(e-;).  For n = 0, however. the expressions for u and v are valid 
for all y >, yl. The expression for p ,  on the other hand, also contains a secular term 
for n = 0. 

The secular terms can be removed by the method of multiple scales. We introduce 
the strained coordinate y+ = y( 1 +a,  E + u2 2 + . . .) and the nonlinear scale 5 = ey2. 
Writing the outer solution in the form 

K 

O(se.2). 

y o u ,  = B,(y+, 5) +eH,(y+, t )  + ... 
it is then found that 

Apparently, the wave-induced velocities (and also the pressure) show an oscillatory 
dependence on height if w = O ( e ) .  

6. Comparison with other studies 

rate becomes 
Reverting to the use of dimensional variables, the expression (86) for the growth 

where c denotes the dimensional phase spced of the water wave. 
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FIGURE 1 .  Growth rate (93) for various turbulence models (n = 0,2 ,4)  against U J C ,  compared with 
measurements : A, Shemdin & Hsu (1967) ; , Larson & Wright (1975) ; x , Wu, Hsu & Hsu (1977, 
1979); 0, Snyder et al. (1981), fixed sensors; 0, Snyder et al. (1981), wave-following sensor. Data 
compiled by Plant (1982). 

At heights large compared with the roughness length yo, the wind profile is 
approximately of the form U = (u,/K) log (y/yo). The roughness length is related to 
the friction velocity according to the Charnock relation (8). Using the dispersion 
relation for deep-water waves, and requiring that U(L)  = V (see below (10)) we then 
obtain 

Furthermore, c / V  = ( c / u * )  8. Thus, the growth rate (93) is now fully determined by 
the parameter U J C .  

The predicted growth rates are plotted in figure 1 for various values of n, where n 
denotes the free parameter in the turbulence model (4), (5). For n = 0 we deal with 
the eddy-viscosity model. In figure 1 we take s = 0.00125, K = 0.4 and 01 = 0.0144. 
The experimental data were compiled by Plant (1982). We conclude that, unless n is 
allowed to be large, the present theory underestimates the observed growth rates. 

It should be noted, however, that the validity of the turbulence model (4), (5) is 
restricted to small phase speeds, see below (9). Moreover, the condition 

v- c 
- 3 - €  V (95) 
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FIGURE 2 .  The open circles represent the ratio R of the growth rate of Gent 8: Taylor (1976) to the 
growth rate (93) for n = 0 ,  E = 0.05. The wave slope is 0.157. The solid lines represent the 
corresponding ratio for the growth rate of Makin (1989) for n = 0 and various E .  The wave slope 
is 0.1. 

must be satisfied in order that thc analysis is valid. In  other words, both 6 and c / V  
must be small. 

We took a = 0.0144 (old wind sea) to obtain drag coefficients which are roughly in 
agreement with those reported by Snyder et al. (1981). We studied the sensitivity of 
our results by varying a by two orders of magnitude (a = 0.002; a = 0.1) and found 
that, in the range of validity of our theory, the growth rate only changed by a factor 
of three. The main reason for this insensitivity is that thc growth rate only has a 
logarithmic dependence on the Charnock constant. 

As mentioned before, the dependence of the predicted growth rate (93) on u*/c is 
determined by (94). Unfortunately, the latter relation implics that E is relatively 
large for small phase speeds, which violates condition (95). On thc other hand, (94) 
presumably overestimates 8 (i.e. the square root of the drag coefficient u',/V') for 
small phase speeds. Therefore a smaller value of the Charnock constant a for the 
high-frequency waves would be more appropriate, leading to larger growth rates 
than those shown in figure 1.  

Figure 2 shows the predicted growth rates compared with those obtained by Gent 
& Taylor (1976) and Makin (1989), based on nonlinear numerical calculations. I n  
that figure, R (denoting the ratio of the nonlinear growth rate to the growth rate (93) 
for the eddy-viscosity model) is plotted against UJc for various values of€ ,  where U, 
denotes the wind speed at  a height of one wavelength. The agreement is better as the 
drag coefficient and the phase speed decrease compared to the wind speed. At 
increasing drag coefficient, or increasing wave speed. on the other hand, when 
condition (95) is violated, the agreement rapidly worsens. 

Figure 3 shows a comparison of the predicted wave-induced vertical velocity 
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FIGURE 3. The amplitude of the predicted vertical velocity (89) with n = 0 (solid lines) compared 
with measurements (open circles) by Stewart (1970) ; (a )  e = 0.36, E = 0.052; (b )  e = 0.52, e = 0.055; 
(c) c = 0.67, E = 0.056. 

profile (89) with laboratory measurements by Stewart (1970) a t  various (dim- 
ensionless) phase speeds and a small drag coefficient. All variables were non- 
dimensionalized according to the scaling below (10). The comparison was made for 
the eddy viscosity model. We conclude that the agreement is rather satisfactory a t  
small phase speeds. At larger phase speeds, however, the agreement becomes poor, 
indicating once more that condition (95) is essential. 

When the predicted velocities are compared with the laboratory measurements by 
Hsu & Hsu (1983), the same conclusions can be drawn. Even at relatively large 
dimensionless phase speeds (c = 0.52, for instance, corresponding to run 4 of their 
measurements) the amplitude of the predicted horizontal velocity (88) differs 
nowhere by more than 50 YO from the measured amplitude. 

The decay rate of the amplitude of the predicted air pressure (90) with height 
proves to be smaller than predicted by potential theory. For high wind speeds this 
is in agreement with the laboratory measurements by Papadimitrakis et al. (1986). 
In  addition, the pressure phase shift from the wave trough is almost independent of 
height, which is again in agreement with measurements (Snyder et al. 1981; 
Papadimitrakis et al. 1986). 

7. Summary of conclusions 
The growth rate of water waves generated by wind that we obtained depends on 

the choice of the turbulence model. In particular, this rate is larger for Prandtl’s 
mixing-length model than for the eddy-viscosity model. In  case of the latter model 
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the growth rate is the same as that derived by Jacobs (1987). This author studied a 
similar problem for the eddy-viscosity model but disregarded the effect of viscosity. 

The present theory underestimates the measured growth rates. When compared 
with other theoretical studies, however, the agreement is much better, although 
nonlinear effects may be important. In this respect it should be noted that most 
theoretical studies underestimate the measured growth rates. To a certain extent this 
could be accounted for by the fact that the measured growth rates represent not only 
the energy transfer from the wind to the water wave. As shown by Gent & Taylor 
(1976), for example, a roughness length varying along the wave surface (simulating 
the presence of much smaller gravity and capillary waves riding on the dominant 
wave) significantly increases the growth rate compared to the case of a uniform 
roughness length, which may indicate the relevance of short wave-long wave 
interactions. 

A comparison of the predicted vertical velocity profile with measurements shows 
a fairly reasonable agreement. However, the condition of small characteristic drag 
coefficient, and phase speeds which are small compared to the wind speed, is essential 
to the validity of the above results. 

At small dimensionless phase speeds the decay rate of the predicted air pressure 
amplitude with height is smaller than predicted by potential theory. In addition, the 
pressure phase shift is almost independent of height. These results show again a 
qualitative agreement with laboratory measurements and field observations. 

The turbulence models used in this paper are open to criticism. However, in 
preference to a refined (and inherently complex) model we introduced a family of 
relatively simple turbulence models which allow the derivation of closed-form 
expressions for the various variables and, consequently, could increase our insight 
into the flow structure. Then there remains the question which of these models is 
actually appropriate. In addition, i t  is of importance to investigate how far our 
results are modified by nonlinear effects. We expect that, especially for short gravity 
waves, when the critical layer is close to the water surface, nonlinearity may have an 
important effect on the growth rate and on the wavc-induced flow. 
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